10

15

20

25

PATENT APPLICATION
METHOD AND APPARATUS FOR WEB CACHING

Inventors: Michael ZHU
1156 Fairford Way
San Jose, CA 95129

A Citizen of United States

Assignee: ZEUS COMMUNICATIONS, INC
441A West Trimble Road
San Jose, CA 95131
A California Corporation

CARY & KELLY, LLP
1875 Charleston Road
Mountain View, CA 94043
Telephone (650) 316-4009

14

10

15

20

CERTIFICATE OF EXPRESS MAILING
I hereby certify that this paper and the documents and/or fees referred to as attached therem are being deposited with the United States
Postal Service on May 22, 2001 in an envelope as “Express Mail Post Office to Addressee” spvice under 37 CFR §1.10, Mailing
Label Number EF397446009US, addressed to the Assistant Commissioner for Patg A f oton, DC 20231,

Date: May 22, 2001 Signed:

PATENT APPLICATION

METHOD AND APPARATUS FOR WEB CACHING

CROSS-REFERFENCE TO RELATED APPLICATION

This application claims priority from Provisional Application Numbers:
60/205,913 entitled “SYSTEM AND APPARATUS FOR IMPLEMENTING WEB
CACHE” filed on 5/22/2000 (Attorney Docket # ZEUSP002P) which is incorporated

herein by reference in its.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to computer networks and more particularly to an

apparatus and method for caching web pages.

2. Description of the Related Art

Caching is a methodology which has been applied with great advantage in
devices ranging from computers, peripheral devices, and web browsers. Caching
involves maintaining copies of recently used data in an alternate memory location to
the main memory in which the original data is stored. This alternate memory location
is identified as a cache memory. Cache policies have been developed to deal with the
issues surrounding the identification and resolution of a lack of coherance between the
copy of a set of data in cache memory and the original data in main or other source

memory. Foremost among these policies is the concern with identifying data that no

10

15

20

25

30

longer corresponds with the corresponding data in main or source memory. Such data
in cache memory is said to be non-coherant, stale, or old data.

In closely coupled systems such as computers, elaborate cache policies have
been developed which deal with maintenance of coherancy between the copy n cache
memory and the source data in main memory. Only recently has there been an interest
in applying cache methodoligies to loosely coupled systems. A primary area of such
interest involves the Internet. Current browsers maintain the last five or ten web pages
in cache memory. The presence of this cache capability in browsers provides users
faster access to recently viewed data. With the relatively long download times
required for a web page this is no small advantage. There are however drawbacks to a
browser cache. The cache is shallow, i.e. maintains only the last five or ten web
pages. This is typically only a fraction of the pages that a typical Internet user will
frequently visit. A second drawback to a browser cache is that the cached pages are in
many cases stale, old or out-dated, in that they do not maintain coherancy with the
source pages delivered from the data center and associated web servers therein from
which they were supplied.

What is needed is are improvements in the area of the caching of web pages.

SUMMARY OF THE INVENTION

The present invention provides a method and apparatus for web caching that
does not require any changes to existing browsers or the computer platforms on which
they run. Instead complementary cache management modules, a coherency module
and a cache module(s) are installed complementary gateways for data and for clients
respectively. The coherency management module is implemented at or near a data
center, data source, Internet service provider (ISPs) or central office. Physically the
coherency management module may be located in a server, gateway, router or switch.
The cache modules are installed at remote sites including, servers, proxy servers,
gateways, routers or switches. The coherency management module monitors data
access requests and or response and determines for each: the uniform resource locator
(URL) of the requested web page, the URL of the requestor and a signature. The
signature is computed using cryptographic techniques and in particular a hash function
for which the input is the corresponding web page for which a signature is to be

10

15

20

25

30

generated. Each signature is an extremely compact and unique identifier for the
corresponding web page. A typical signature might require100-200 bits for a web page
that itself might require tens of thousands of bits for its storage.

The coherency management module caches these signatures and the
corresponding URL and uses the signatures to determine when a page has been
updated. When, on the basis of signature comparisons it is determined that a page has
been updated the coherency management module sends a notification to all
complementary cache modules. Each cache module caches web pages requested by
the associated client(s) to which it is coupled. The notification from the cache
management module results in the cache module(s) which are the recipient of a given
notice updating their tag table with a stale bit for the associated web page. The stale
bit indicates that the actual web page stored on or by the cache module is no longer
current. The cache module(s) use this information in the associated tag tables to
determine which pages they need to update. The cache modules initiate this update
during intervals of reduced activity in the servers, gateways, routers, or switches of
which they are a part. All clients requesting data through the system of which each
cache module is a part are provided by the associated cache module with cached
copies of requested web pages thus avoiding the delay associated with obtaining the

originals of such pages from the data center or source.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be readily understood by the following detailed description
in conjunction with the accompanying drawings, wherein like reference numerals
designate like structural elements, and in which:

FIG. 1 shows an overall system environment with a cache management module
located at a data gateway interfacing across a network with a plurality of cache
modules located at remote client gateways.

FIG. 2A is a hardware block diagram of the data gateway and the coherency

management module located therein.

10

15

20

25

30

FIGS. 2B-C show various data structures maintained by the coherency
management module shown in FIG. 2A.

FIG. 3A is a hardware block diagram of a remote client gateway and the cache
module located therein.

FIG. 3B shows various data structures maintained by the cache module shown in
FIG. 3A.

FIG. 4 is a process flow diagram of the processes implemented by the coherency
management module shown in FIG. 2A.

FIG. 5 is a process flow diagram of the processes implemented by the cache
module shown in FIG. 3A.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a method and apparatus for web caching
that does not require any changes to existing browsers or the computer platforms on
which they run. Instead complementary cache management modules, a coherency
module and a cache module(s) are installed complementary gateways for data and for
clients respectively. The coherency module is installed at or near the data source. One
or more companion cache modules are installed at one or more remote sites. The
coherency management module manages indirectly the tag tables maintained by each
of the cache modules for the web pages which they, the cache modules have cached.

The coherency management module is implemented at or near a data center, data
source, Internet service provider (ISPs) or central office. Physically the coherency
management module may be located in a server, gateway, router or switch. The cache
modules are installed at remote sites including, servers, proxy servers, gateways,
routers or switches. The coherency management module monitors data access requests
and or response and determines for each: the uniform resource locator (URL) of the
requested web page, the URL of the requestor and a signature. The signature is
computed using cryptographic techniques and in a particular embodiment of the
invention, a hash function for which the input is the corresponding web page for which

a signature is to be generated. Each signature is an extremely compact and unique

10

15

20

25

30

identifier for the corresponding web page. A typical signature might require100-200
bits for a web page that itself might require tens of thousands of bits for its storage.

A range of hash algorithms may be used for this purpose including: Secure
Hash Algorithm (SHA), Message Digest (MDx) for example. The signature has the
property that no two web pages will generate the same signature, and further that two
versions of the same web page differing in a small portion of their content will not
generate the same signature. Each signature is an extremely compact identifier for the
corresponding web page, requiring for example in the case of SHA only 160 bits for a
web page that may include 2** bits.

The coherency management module caches these signatures and the
corresponding URL and uses the signatures to determine when a page has been
updated. When, on the basis of signature comparisons it is determined that a page has
been updated, the coherency management module sends a notification to all
complementary cache modules. Each cache module caches web pages requested by
the associated client(s) to which it is coupled. The notification from the cache
management module results in the cache module(s) which are the recipient of a given
notice updating their tag table with a stale bit for the associated web page. The stale
bit indicates that the actual web page stored on or by the cache module is no longer
current. The cache module(s) use this information in the associated tag tables to
determine which pages they need to update. The cache modules initiate this update
during intervals of reduced activity in the servers, gateways, routers, or switches of
which they are a part.

All clients requesting data through the device of which each cache module is a
part are provided by the associated cache module with cached copies of requested web
pages which are coherent when such pages have been cached. This avoids the delay
associated with obtaining the originals of such pages from the data center or source,
and assures their coherency.

FIG. 1 shows an overall system environment with a cache management module
located at a data gateway interfacing across a network with a plurality of cache
modules located at remote client gateways. A data gateway 110 is shown coupled
across a network 100 with client gateways 120, 140 and 160. The data gateway

couples across a network 108 with a plurality of data sources, which in the example

10

15

20

25

30

shown are servers 114, 116 and 118. The data gateway may comprise a server,
gateway, router or switch for example. A cache coherency management module (See
FIG. 2A) on the data gateway runs processes 112 shown in FIG. 4 for maintaining
cache coherency between the web pages cached by each of the cache modules (See
FIG. 3A) on the client gateways and the corresponding original web pages provided by
corresponding ones of the data sources 114-118.

Client gateway 160 includes a cache module (See FIG. 3A) which runs
processes 162 (See FIG. 5) for maintaining a cache of web pages for clients 170-172
to which it is coupled via network 102. Client gateway 140 includes a cache module
(See F1G. 3A) which runs processes 142 (See FIG. 5) for maintaining a cache of web
pages for clients 150-152 to which it is coupled via network 104. Client gateway 120
mcludes a cache module (See FIG. 3A) which runs processes 122 (See FIG. 5) for
maintaining a cache of web pages for clients 130-132 to which it is coupled via
network 106.

Each request for a web page by any of clients 170-172, 150-152 and 130-132 is
honoured either by delivery of the web page from the associated cache module within
the corresponding one of the cache modules of client gateways 120, 140, 160 or the
retrieval of the web page from the corresponding one of servers 114-118. The client
gateway 160 is shown delivering web page 174 to client 172. That web page may
either come from the associated cache module or the associated one of servers 114-
118. The coherency processes 112 on the data gateway 110 are shown delivering an
update message 180 to the cache module of client gateway 160. Responsive to the
receipt of the update message the cache module initiates a request for an updated copy
of the web page 176 which is in need of an update from the associated one of servers
114-118. The update determination is made by coherency processes 112 of the
coherency module on data gateway 110 from monitoring of requests for that page
from any clients accessing the associated one of servers 114-118.

FIG. 2A is a hardware block diagram of the data gateway 110 and the coherency
management module 202 located therein which implements processes 112 shown in
FIG. 4 for maintaining cache coherency on each of the cache modules of the client
gateways 120,140,160 shown in FIG. 1. The data gateway includes a hardware block
200 which includes the traditional hardware associated with the corresponding

(R

10

15

20

25

30

gateway type, e.g. server, gateway, router or switch for example. Medium access
controls (MACS) 204 and 206 couple the data gateway hardware to networks 108 and
100 respectively. The coherency management module 202 includes a sniffer 21 0,a
logger 212, a signature generator 216, a signature cache controller 220, an update
detector 222 and an update notification injector 224. The sniffer monitors either or
both incoming or outgoing packets 250-252 to determine the pages requested and the
destination address for the web pages. At no time does the sniffer interfere with the
delivery of requests for web pages or the delivery of those pages by the data gateway.
The sniffer monitors all requests for web pages including those passing through one of
the client gateways shown in FIG. 1. Those requests from a client coupled to the data
gateway through a client gateway are recorded by the logger 212 in an associated
request log 214 shown in detailed view in FIG. 2B. All requests including the above
and whether or not there is an associated gateway may be passed to the signature
generator as well. The signature generator processes the web page to produce a
signature. A signature has the property that it is a unique and compact identifier of the
web page. A typical signature might require100-200 bits for a web page that itself
might require tens of thousands of bits for its storage. A range of hash algorithms may
be used for this purpose including: Secure Hash Algorithm (SHA), Message Digest
(MDx) for example. The signature has the property that no two web pages will
generate the same signature, and further that two versions of the same web page
differing in a small portion of their content will not generate the same signature. Each
signature is an extremely compact identifier for the corresponding web page, requiring
for example in the case of SHA only 160 bits for a web page that may include 2** bits.
The signature generator passes the signature and the corresponding URL to the
cache controller 220 which stores them in signature table 218 shown in detail in FIG.
2C. When successive signatures for the same web page, identified by the same URL
differ the cache controller loads the new signature into the associated row of the
signature table and changes a status bit associated with the web page to indicate
associated web page is stale or out of date. The update module instantaneously or
periodically determines on the basis of the status bit which URLS are stale. The
update detector then determines from the log table 214 what the associated client
gateway(s) is/are. Then this information is passed to the injector 224 to send an

10

15

20

25

30

update packet 180 (See FIG. 1) to the associated cache modules in each
corresponding gateway. The effect of this notice is that the tag table in each cache
module will be updated to indicate which web pages are stale. The cache module will
then schedule and request an updated copy of the associated web page from the
associated one of the servers 114-118. The amount of data stored by the coherency
management module is extremely compact due to the fact that no web pages are
stored, only signatures. Periodically using time stamps (not shown) the least recently
used entries in the log table 214 and the signature table 218 are purged to limit the size
of the data storage requirement for the data gateway 202.

FIGS. 2B-C show various data structures maintained by the coherency
management module shown in FIG. 2A. The structures shown are the log table 214
and the signature table 218. The log table includes fields 260 and 262 for recording
the gateway URL and the URL of the requested web page respectively. Records 264-
270 are shown. The signature table includes fields 272, 274, 276 for recording the
URL of the requested web page, the latest signature for the page and the status bit for
that page respectively. Records 278-286. In an embodiment of the invention the
signature table includes records, i.e. record 286 for web pages requested by clients
coupled to the data gateway by means other than an associated client gateway and
cache module. A possible benefit of collecting this information as well is that the
pages requested by these clients may overlap with the pages requested by gateway
coupled clients thus increasing the statistical likelihood of making a timely update
determination for a web page.

FIG. 3A is a hardware block diagram of a remote client gateway 140 and a
representative cache module 302 located therein which implements processes 142
shown in FIG. 5 for maintaining a cache for the associated clients 150-152 coupled to
the client gateway. The client gateway includes a hardware block 300 which includes
the traditional hardware associated with the corresponding gateway type, e.g. server,
gateway, router or switch for example. Medium access controls (MACS) 304 and 306
couple the client gateway hardware to networks 100 and 104 respectively. The cache
module 302 includes a web page cache controller 308, a update detector 318, an
update scheduler 320, and an update fetcher 316. The web page cache controller
couples to memory 312 for storage of cached web pages 314. The web page cache

10

15

20

25

30

controller monitors request packets 350 from the clients 150-152 for web pages. If
the requested page is in cache and is not stale the controller provides the page to the
client. If the page is not in cache the request is passed along and the responsive packet
which contains the web page is detected and cached in memory 312 by the controller.
The controller mamtains a tab table 310 (See FIG. 3B). That table lists for each of the
stored web pages the URL and the status, e.g. stale or current. The status field is ;
updated in the following manner. When an update message, e.g. message 180 (See
FIG. 1) is received from the coherency manager by the update detector 318 the URL
of the stale page which is the subject of the update is passed to the controller 308 and
the status field for the associated page is changed to “Stale”. Next, the update
scheduler 320 determines that bandwidth requirements or processing activity for the
client gateway 140 is low. When such an interval is indicated the update fetcher
queries the tag table 310 to determine what the URLs are for the pages which are
stale. Then the fetcher requests such pages from the associated server 114-118 and
upon receipt passes them to the cache controller 308. The cache controller stores them
and removes the stale bit from the associated status field. Thus, the coherency of the
web pages 314 cached by cache module 302 is maintained by remote management of
tag table 310 by the data gateway’s coherency management module 202 (See FIG.
2A).

FIG. 3B shows various data structures maintained by the cache module shown in
FIG. 3A. The structures include the tag table 310. The tag table includes fields 350-
352 for recording the URL and the status bit for each of the cached web pages.
Records 354-360 are shown.

FIG. 4 is a process flow diagram of the processes implemented by the coherency
management module shown in FIG. 2A. After initialization in start block 400 control
is passed to decision process 402 for a detection of the next packet either request or
response. When the next packet is received control passes to process 404 in which the
source and destination URLS are recorded in the log table for those requests coming
via a client gateway. Then in process 406 a signature is generated for the requested
web page. Next in process 408 a search is conducted by the signature cache controller
220 (See FIG. 2A) to determine whether a prior signature for the web page exists. If
in decision process 410 a matching URL is found mn the signature cache table 218

10

15

25

30

control is passed to decision process 412. In decision process 412 a determination is
made as to whether the signature matches the prior signature for the page. If it does
then control passes via no change process 414 directly to decision process 420. If
alternately a determination is made that the new signature for the URL and the old
signature in the signature cache table 218 do not match then control passes to process
416 in which the status for the associated record is set to “stale” and the new signature
replaces the old. Subsequently control passes to decision process 420. If alternately,
in decision process 410 a determination is made that the URL of the page for which a
new signature has been generated does not match any URL in the signature table then
control passes to process 418 in which the new record, i.e. signature and associated
URL is recorded in the signature table. Then control passes to decision proess 420.

In decision process 420 a determination is made as to whether an update interval
is indicated. That decision made by the update detector, may be instantaneous upon
detection of a stale record in the signature table or may be delayed to coincide with an
idle or low bandwidth interval of the data gateway. In any event, when an update
mterval is indicated control passes to process 422. In process 422 the records in the
signature table which are stale are correlated with the associated URLS in the log table
214 to determine the gateway URL for each of the pages which are stale. Then in
process 424 a notification message 180 for the target cache modules on the associated
client gateways is injected into the output stream from the data gateway. Next in
process 426 the status bits for the associated records in the signature cache table for
which update notifications has been sent are changed from “stale” to current and
control returns to decision process 402 for processing of the next requested web page.

FIG. 5 is a process flow diagram of the processes implemented by the cache
module shown in FIG. 3A. After a start block 500 in which the system is initialized
control is passed for detection of the next packet in decision process 502. Upon such
detection control is passed to process 504 in which a search is conducted by the cache
controller 308 (See FIG. 3A) for the requested web page. If in decision process 506 a
matching URL is located then control is passed to process 508 in which the cached
page is provided by the controller to the requesting client. Next control is passed to
decision process 512. Alternately, if no matching page is found the request is passed
to the associated data server 114-118 via the data gateway and the web page received

10

10

15

20

in response thereto is cached in the cache memory 312. Next control is passed to
decision process 512.

In decision process 512 a determination is made as to whether an update interval
is indicated. Updating may be carried out instantaneously upon receipt of an update
message or in a delayed manner. If an update message has been received and an
update interval is indicated then control passes to process 514 in which the associated
web page is fetched via a request initiated by the cache module fetcher 316. Next
upon receipt of the page in process 516 the received web page is passed to the cache
controller 308 (See FIG. 3A) and stored in cache memory 312 in replacement of the
stale page. Then in process 518 the status bit for the associated tag record is updated
from stale to current. Then control returns to decision process 502 for the processing
of the next request/response.

The many features and advantages of the present invention are apparent from
the written description, and thus, it is intended by the appended claims to cover all
such features and advantages of the invention. Further, since numerous modifications
and changes will readily occur to those skilled in the art, it is not desired to limit the
mvention to the exact construction and operation as illustrated and described. Hence,
all suitable modifications and equivalents may be resorted to as falling within the scope

of the invention.

11

	2001-05-22 Specification

